LHAM Approach to Fractional Order Rosenau-Hyman and Burgers' Equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar radiation from numerical Rosenau-Hyman compactons

The numerical simulation of compactons, solitary waves with compact support, is characterized by the presence of spurious phenomena, as numerically-induced radiation, which is illustrated here using four numerical methods applied to the RosenauHyman K(p, p) equation. Both forward and backward radiations are emitted from the compacton presenting a self-similar shape which has been illustrated gr...

متن کامل

Study on stability analysis of distributed order fractional differential equations with a new approach

The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...

متن کامل

Fractional-order Legendre wavelets and their applications for solving fractional-order differential equations with initial/boundary conditions

In this manuscript a new method is introduced for solving fractional differential equations. The fractional derivative is described in the Caputo sense. The main idea is to use fractional-order Legendre wavelets and operational matrix of fractional-order integration. First the fractional-order Legendre wavelets (FLWs) are presented. Then a family of piecewise functions is proposed, based on whi...

متن کامل

Crank-Nicolson Difference Scheme for the Generalized Rosenau-Burgers Equation

In this paper, numerical solution for the generalized Rosenau-Burgers equation is considered and Crank-Nicolson finite difference scheme is proposed. Existence of the solutions for the difference scheme has been shown. Stability, convergence and priori error estimate of the scheme are proved. Numerical results demonstrate that the scheme is efficient and reliable. Keywords—Generalized Rosenau-B...

متن کامل

Stability and dynamical properties of Rosenau-Hyman compactons using Padé approximants.

We present a systematic approach for calculating higher-order derivatives of smooth functions on a uniform grid using Padé approximants. We illustrate our findings by deriving higher-order approximations using traditional second-order finite-difference formulas as our starting point. We employ these schemes to study the stability and dynamical properties of K(2,2) Rosenau-Hyman compactons inclu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Asian Research Journal of Mathematics

سال: 2020

ISSN: 2456-477X

DOI: 10.9734/arjom/2020/v16i630192